MATH 234 MIDTERM EXAM

Student Nam	ne: Key I	Student Number:	
Instructor:		Section:	
Question	n 1. (22 points) Answer by true of	or false:	
1.	If A is row equivalent to B , the	en $A\mathbf{x} = \mathbf{b}$ and $B\mathbf{x} = \mathbf{b}$ have the same solution set.	
2. solution	If a system of linear equations	is overdetermined and consistent, then it must have infinitely many	
3. <u>F</u>	If A, B, C are $n \times n$ matrices	such that $AB = AC$, then $B = C$.	
4	\square Span $\{1+x,1-x\}$ is a subspace of P_2		
5. <u> </u>	Any nonsingular matrix can be	e written as a product of elementary matrices.	
6. <u>F</u>	$\underline{\hspace{0.5cm}}$ If A is row equivalent to B the	on both A and B are nonsingular.	
7. T	If span $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\} = R^3$ then span $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}\} = R^3$ for any $\mathbf{x} \in R^3$.		
8.	If A is singular then $adj(A)$ is	singular.	
9.	If A is singular and U is the re	we echelon form of A , then $det(U) = 0$.	
10. <u>F</u>	_ Suppose that $\{f_1, f_2,, f_n\} \subseteq$	$C^{n-1}[a,b]$. If $W[f_1,\ldots,f_n]=0$, where W denotes the Wronskien,	
	then $f_1, f_2,, f_n$ are linearly of	lependent.	
11. <u> </u>	Every linear system can be sol-	ved using Cramer's Rule.	
12. <u> </u>	If E_1 and E_2 are elementary $n \times n$ matrices, then E_1E_2 is elementary.		
13.	(AB)C = A(BC) for all matrice	ces A , B , and C when multiplication is allowed.	
14.	_ If A and B are $n \times n$ matrices	and A is singular, then AB is singular.	
15.	_ If A , B are $n \times n$ matrices, $ A $	$= 2$ and $ B = -2$, then $ A^{-1}B^T = -1$.	
16. <u> </u>	_ If A and B are symmetric $n \times$	n matrices then AB is symmetric.	
17. <u> </u>	_ A linear homogeneous system v	which has a nonzero solution must have infinitely many solutions.	
18.	_ If S is a set of vectors that are subset of S is linearly independent	linearly independent in a vector space V then any nonempty dent	
19	_ If S is a set of vectors that are of V containing S is linearly in	linearly independent in a vector space V then any subset dependent	
20. <u> </u>	_ If S is a subspace of V then an	y set of vectors in S that spans S also spans V .	
21. _	_ If A is a singular $n \times n$ matrix,	then $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions for every vector $\mathbf{b} \in R^n$.	
22.	_ The set $\{1, \sin^2 x, \cos^2 x\}$ is line	early dependent in $C[0,\pi]$.	

Question 2 (36 points) Circle the most correct answer:

- 1. One of the following is a subspace of $R^{n \times n}$
 - (a) All singular $n \times n$ matrices
 - (b) All upper triangular $n \times n$ matrices
 - (c) All nonsingular $n \times n$ matrices
 - (d) All triangular $n \times n$ matrices
- 2. The set of vectors $\{(1,a)^T,(b,1)^T\}$ is a spanning set for \mathbb{R}^2 if
 - (a) $a \neq 1$ and $b \neq 1$
 - (b) $ab \neq 1$
 - (c) ab = 1
 - (d) $a \neq b$
- 3. One of the following matrices is in reduced row echelon form
 - $\text{(a)} \, \left[\begin{array}{ccccc} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array} \right]$

 - $\text{(d)} \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 1 \\
 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 1
 \end{bmatrix}$
- 4. One of the following is a spanning set of \mathbb{R}^3
 - (a) $\{(1,-1,1)^T, (-4,4,-4)^T, (3,0,5)^T\}$
 - (b) $\{(2,0,0)^T, (0,3,-4)^T\}$
 - (c) $\{(2,0,0)^T, (0,2,0)^T, (1,1,0)^T, (0,-3,0)^T\}$
 - (d) $\{(-1,-1,-1)^T, (-1,-2,-1)^T, (-1,0,0)^T\}$

5. Suppose that y and z are both solutions to Ax = 0 then

- (a) $A\mathbf{x} = \mathbf{0}$ has exactly two solutions
- (b) y = z
- $\mathbf{C}\mathbf{y} + \mathbf{z}$ is a solution to $A\mathbf{x} = \mathbf{0}$
- (d) None of the above

6. The set $\{(1,1,1)^T,(1,1,c)^T,(1,c,1)^T\}$ is linearly independent in \mathbb{R}^3 if

- (a) $c \neq 1$
- (b) c = -1
- (c) c = 1
- (d) c is any real number

7. Let $A = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$ then the (2,3) entry of A^2 is

- (a) 0
- (b))1
- (c) 2
- (d) 3

8. Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$ and $B = \begin{bmatrix} a & 4d & a+g \\ b & 4e & b+h \\ c & 4f & c+i \end{bmatrix}$. If |A| = 3 then |B| = 4

- (a) 12 (b) 6

 - (c) 3
 - (d) 24

9. If A is a 3×3 matrix with det(A) = 2 then det(adj(A)) is

- (a) 2
- **(b)** 4
- (c) 0
- (d) $\frac{1}{2}$

- 10. Let $A = \begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}$. Then the adjoint of A is
 - (a) $\begin{bmatrix} 2 & 1 \\ -3 & 1 \end{bmatrix}$

 - (c) $\begin{bmatrix} 2 & -1 \\ -3 & 1 \end{bmatrix}$
 - (d) $\begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}$
- 11. One of the following is not a subspace of P_3
 - (a) $\{p \in P_3 \mid p(1) = p(-1)\}$
 - (b) $\{p \in P_3 | p(2) = 0\}$
 - (c) $\{p \in P_3 | p(2) = p(5)\}$
 - $(d) \ p \in P_3 | p(0) = 2$
- 12. One of the following sets is linearly independent in P_3
 - (a) $\{2x, 2-x, x^2\}$ (b) $\{1+x, 1-x, 1\}$

 - (c) $\{x, x^2, 2x + 3x^2\}$
 - (d) $\{2, 2-x, x\}$
- 13. One of the following sets is a subspace of C[-1,1]
 - (a) $\{f(x) \in C[-1,1] ; f(1) = 0\}$ (b) $\{f(x) \in C[-1,1] ; f(1) = 1\}$

 - (c) $\{f(x) \in C[-1,1] ; f(1) = -1\}$
 - (d) $\{f(x) \in C[-1,1] ; f(1) = 0 \text{ or } f(-1) = 0\}$
- 14. Suppose A and B are $n \times n$ nonsingular matrices. Then
 - (a) AB is nonsingular
 - (b) $B^T A^{-1}$ is nonsingular
 - (c) ABA^{-1} is nonsingular
 - (d) all of the above

15. The vectors $1, x, x^2, x^2 + x - 1$

- (a) are linearly independent in P_3
- (b) are linearly independent in P_4
- (c)span P_3
- (d) span P_4

16. consider the linear system

(a) The system has a unique solution if

$$egin{aligned} & \stackrel{ ext{i.}}{\text{oii.}} k=2 \ & \stackrel{ ext{iii.}}{\text{oii.}} k
eq -2, \, 2 \ & \stackrel{ ext{iii.}}{\text{oii.}} k
eq -2 \end{aligned}$$

iii.
$$k \neq -2$$

iv. none of the above

(b) The system has infinitely many solutions if

i.
$$k = 2$$

ii.
$$k \neq 2$$

$$(iii)$$
 $k = -2$

ii. $k \neq 2$ iii. k = -2iv. none of the above

(c) The system is inconsistent if

$$(i)$$
 $k=2$ ii. $k \neq -2$

ii.
$$k \neq -2$$

iii.
$$k=-2$$

iv. none of the above

Question 3. (14 points) Recall that the null space of an $m \times n$ matrix A is the set

$$N(A) = \{ \mathbf{x} \in R^n \, | \, A\mathbf{x} = \mathbf{0} \}.$$

1. Prove that N(A) is a subspace of \mathbb{R}^n .

N(A) is nonempty since
$$A\vec{x} = \vec{\sigma}$$
 duage has the trivial sol $= \vec{\sigma} \in N(A)$

If $d = \vec{x} \in N(A)$ of let $d = \vec{x} \in A$ is a scalar

$$A(d = \vec{x}) = d(d = \vec{x}) = d(d = \vec{x}) = d(d = \vec{x})$$

$$A(d = \vec{x}) = d(d = \vec{x}) = d(d = \vec{x}) = d(d = \vec{x})$$

$$A(d = \vec{x}) = A\vec{x} + A\vec{y} = \vec{\sigma} + \vec{\sigma} = \vec{\sigma} = \vec{x} + \vec{y} \in N(A)$$

2. Find the null space of the matrix
$$A = \begin{bmatrix} 1 & -2 & 3 & 2 \\ -1 & 2 & -2 & -1 \\ 2 & -4 & 5 & 3 \end{bmatrix}$$

lead variables & X, X2 free , 3 X2, X4

$$|d \quad X_2=t, \quad X_4=S \longrightarrow X_3=-S$$

$$X_1=2t+S$$

$$\vec{X} = \begin{bmatrix} 2t+5 \\ t \\ -5 \\ S \end{bmatrix}, t, S \in \mathbb{R}$$

Question 4 (8 points) Let A be an $n \times n$ matrix satisfying $A^T A = A$. Prove the following:

- 1. A is symmetric.
- 2. $A = A^2$.
- 3. Find all possible values of det(A).

1.
$$A = A^{T}A$$
 $A^{T} = (A^{T}A)^{T} = A^{T}A = A$

2. $A = A^{T}A = A^{T}A = A^{T}A$

3. $A = A^{T}A = A^{T}A = A^{T}AA = A^{T}AA$
 $A = A^{T}A = A^{T}A = A^{T}AA = A^{T}AA$
 $A = A^{T}A = A^{T}AA = A^{T}AA = A^{T}AA$
 $A = A^{T}A = A^{T}AA = A^{T}AA = A^{T}AA$
 $A = A^{T}A = A^{T}AA = A^{T}AA = A^{T}AA = A^{T}AA$
 $A = A^{T}A = A^{T}AA = A^{T}$

$$= > |A|^{2} |A| = 0$$

$$|A| (|A| - 1) = 0$$

$$= > |A| = 0 = 1$$